MATHEMATICS SOLUTION

(MAY 2019 SEM 4 MECHANICAL)

Q1. (a) Write the dual of the given LLP

Maximise $\mathrm{Z}=\mathbf{4} \mathbf{x} 1+\mathbf{9} \mathbf{x} \mathbf{2}+\mathbf{2 x} 3$

Subjected to: $2 \mathbf{x}_{1}+3 \mathbf{x}_{2}+2 \mathrm{x}_{3} \leq 7$, $3 x_{1}-2 x_{2}+4 x_{3}=5$,
$\mathbf{x} 1, \mathbf{x} 2, \mathbf{x}_{3} \geq \mathbf{0}$

Solution:

Since the problem is of maximisation type, the constraints must be expressed in less than or equal to form.
$2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 7$
$3 x_{1}-2 x_{2}+4 x_{3}=5$
i.e. $3 x_{1}-2 x_{2}+4 x_{3} \geq 5$ and $3 x_{1}-2 x_{2}+4 x_{3} \leq 5$
i.e. $-3 x_{1}+2 x_{2}-4 x_{3} \leq-5$ and $3 x_{1}-2 x_{2}+4 x_{3} \leq 5$
hence the given problem becomes,
Maximise $\mathrm{Z}=4 \mathrm{x}_{1}+9 \mathrm{x}_{2}+2 \mathrm{x}_{3}$
Subjected to: $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 7$,

$$
\begin{aligned}
& -3 x_{1}+2 x_{2}-4 x_{3} \leq-5 \\
& 3 x_{1}-2 x_{2}+4 x_{3} \leq 5, \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Since the last constraint in the primal is an equality y_{3} must be unrestricted. Let $\mathrm{y}_{1}, \mathrm{y}_{2}{ }^{\prime}, \mathrm{y}_{2}$ " be the associated non negative variables of the dual. Then the dual is
$\mathrm{w}=7 \mathrm{y}_{1}+5 \mathrm{y}_{2}{ }^{\prime}-5 \mathrm{y}_{2}{ }^{\prime \prime}$
$2 y_{1}+3 y_{2}{ }^{\prime}-3 y_{2}{ }^{\prime \prime} \geq 4$
$3 y_{1}+2 y_{2}{ }^{\prime}-2 y_{2}{ }^{\prime \prime} \geq 9$
$2 y_{1}+4 y_{2}{ }^{\prime}-4 y_{2}{ }^{\prime \prime} \geq 2$
Putting $\mathrm{y}_{2}{ }^{\prime}-\mathrm{y}_{2}{ }^{\prime \prime}=\mathrm{y}_{2}$, where y_{2} is unrestricted, the required dual is
$\mathrm{w}=7 \mathrm{y}_{1}+5 \mathrm{y}_{2}$
$2 \mathrm{y}_{1}+3 \mathrm{y}_{2} \geq 4$
$3 \mathrm{y}_{1}+2 \mathrm{y}_{2} \geq 9$
$2 \mathrm{y}_{1}+4 \mathrm{y}_{2} \geq 2$
$\mathrm{y}_{1} \geq 0 ; \mathrm{y}_{2}$ is unrestricted.
(b) If X is a random variable with probability density function
$f(x)=\left\{\begin{array}{l}x k ; 0 \leq x \leq 2 \\ 2 k ; 2 \leq x \leq 4 \\ 6 k ; 4 \leq x \leq 6\end{array}\right.$
find k, expectation and $\mathrm{P}(1 \leq x \leq 3)$.

Solution:

Since, $\int_{-\infty}^{\infty} f(x) \cdot d x=1$
$\int_{0}^{2} x k . d x+\int_{2}^{4} 2 k \cdot d x+\int_{4}^{6} 6 k \cdot d x=1$
$\left(\left.\frac{x^{2}}{2} k \right\rvert\, x=0\right.$ to 2$)+(2 k x \mid x=2$ to 4$)+(6 x k \mid x=4$ to 6$)=1$
$(4 / 2) k+(8 k-4 k)+(36 k-24 k)=1$
$2 \mathrm{k}+4 \mathrm{k}+12 \mathrm{k}=1$
$\mathrm{k}=1 / 18$
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\frac{x}{18} ; 0 \leq x \leq 2 \\ \frac{1}{9} ; 2 \leq x \leq 4 \\ \frac{1}{3} ; 4 \leq x \leq 6\end{array}\right.$
$\mathrm{P}(1 \leq x \leq 3)=\int_{1}^{3}\left(\frac{x}{18}+\frac{1}{9}\right) \cdot d x$

$$
\begin{aligned}
= & \left(\left.\frac{x^{2}}{2 * 18}+\frac{x}{9} \right\rvert\, x=1 \text { to } 3\right) \\
= & (3 * 3) /(18 * 2)+(3 / 9)-(1 * 1) /(18 * 2)-(1 / 9) \\
& =4 / 9
\end{aligned}
$$

$\mathrm{E}(\mathrm{X})=\int_{-\infty}^{\infty} x \cdot f(x) \cdot d x$

$$
\begin{aligned}
& =\int_{0}^{2} \frac{x^{3}}{18} \cdot d x+\int_{2}^{4} \frac{x}{9} \cdot d x+\int_{4}^{6} \frac{x}{3} \cdot d x \\
& =\left(\left.\frac{x^{4}}{4 * 18} \right\rvert\, x=0 \text { to } 2\right)+\left(\left.\frac{x^{2}}{2 * 9} \right\rvert\, x=2 \text { to } 4\right)+\left(\left.\frac{x^{2}}{2 * 3} \right\rvert\, x=4 \text { to } 6\right) \\
& =\frac{2^{4}}{4 * 18}+\frac{4^{2}}{2 * 9}-\frac{2^{2}}{2 * 9}+\frac{6^{2}}{2 * 3}-\frac{4^{2}}{2 * 3} \\
& =\frac{38}{9}
\end{aligned}
$$

(c)A tyre company claims that the life of the tyres have mean $42,000 \mathrm{kms}$ with standard deviation of $4,000 \mathrm{kms}$. A change in the production process is believed to a result in better product. A test sample of 81 new tyres has a mean life $42,500 \mathrm{kms}$. Test at 5% level of significance that the new product is significantly better than old one.

Solution:

$\mathrm{H}_{\mathrm{o}}: \mu=42000 \mathrm{~km}$.
$\mathrm{H}_{1}: \mu>42000 \mathrm{~km}$.
Here $n=81$,
Test statistic: $\mathrm{Z}_{\text {cal }}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{\overline{42500}-42000}{4000 / \sqrt{81}}=1.125$
Alternate hypothesis shows, this is right tailed test.
$\alpha=0.05, Z_{\alpha}=1.64$ which is the critical value.
Decision :
Since $\mathrm{Z}_{\mathrm{ca1}}<\mathrm{Z}_{\alpha}=>$ Zeal lies in the acceptance region
Hence H_{0} is accepted and H_{1} is rejected
New product is not significantly better than the current one.
(d) Find the minimal polynomial of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$. Is A derogatory.

Solution:
$|A-\lambda I|=0$
$\left|\begin{array}{ccc}2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda\end{array}\right|=0$
$(2-\lambda) *[(3-\lambda) *(2-\lambda)-2]-2[2-\lambda-1]+1[2-3+\lambda]=0$
$\lambda^{3}-7 \lambda^{2}+11 \lambda-5=0$
$\lambda=1,1,5$
Let us now find minimal polynomial of A. We know that each characteristic root of A is a root of the minimal polynomial of A. So if $f(x)$ is the minimal polynomial of A, then ($x-1$) and (x-5) are the factors of $\mathrm{f}(\mathrm{x})$

Let us see whether $(x-1)(x-5)=x^{2}-6 x+5$ annihilates A

$$
\begin{aligned}
A^{2}-6 A+6 I & =\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]-6\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]+5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
7 & 12 & 6 \\
6 & 13 & 6 \\
6 & 12 & 7
\end{array}\right]-\left[\begin{array}{ccc}
12 & 12 & 6 \\
6 & 18 & 6 \\
6 & 12 & 12
\end{array}\right]+\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Thus, $f(x)$ is monic polynomial of lowest degree that annihilates A. Hence $f(x)$ is minimal polynomial of A. Since its degree is less than the order of A, A is derogatory.

Q2. (a) Use Big M method to solve the following LLP
Minimise $\mathbf{Z}=\mathbf{2} \mathbf{x}_{1}+\mathbf{x}_{2}$
Subjected to: $3 x_{1}+x_{2}=3$,

$$
\begin{aligned}
& 4 x_{1}+3 x_{2} \geq 6, \\
& x_{1}+2 x_{2} \leq 3,
\end{aligned}
$$

$$
\mathbf{x}_{1}, \mathrm{x}_{2} \geq \mathbf{0}
$$

Solution:

We have,
Maximise $\mathrm{z}^{\prime}=-\mathrm{z}=-2 \mathrm{x}_{1}-\mathrm{x}_{2}-0 \mathrm{~s}_{1}-0 \mathrm{~s}_{2}-\mathrm{MA}_{1}-\mathrm{MA}_{2}$
Subject to $3 \mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}+\mathrm{A}_{1}+0 \mathrm{~A}_{2}=3$

$$
\begin{align*}
& 4 x_{1}+3 x_{2}-\mathrm{s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~A}_{1}+\mathrm{A}_{2}=6 . \tag{iii}\\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+0 \mathrm{~s}_{1}+\mathrm{s}_{2}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}=3 .
\end{align*}
$$

Multiply (ii) and (iii) by M and (i)
Maximise $z^{\prime}=(-2+7 M) x_{1}+(-1+4 M) x_{2}-\mathrm{Ms}_{1}+0 \mathrm{~s}_{2}-\mathrm{A}_{1}-0 \mathrm{~A}_{2}-9 \mathrm{M}$

$$
\mathrm{z}^{\prime}+(2-7 \mathrm{M}) \mathrm{x}_{1}+(1-4 \mathrm{M}) \mathrm{x}_{2}+\mathrm{Ms}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}=-9 \mathrm{M}
$$

Iteration	Basic	Coefficient of						R.H.S.	Ratio
No.	Var.	x_{1}	x_{2}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	Soln	
0	z	$2-2-7 \mathrm{M}$	$1-4 \mathrm{M}$	M		0	0	0	

A_{1} leaves	A_{1}	3^{*}	1	0	0	1	0	3	1
x_{1} enters	A_{2}	4	3	-1	0	0	1	6	1.5
	$\mathrm{~S}_{2}$	1	2	0	1	0	0	3	3

A_{2} leaves	X 1	1	1/3	0	0		0	1	3
X_{2} enters	A_{2}	0	5/3*	-1	0	-	1	2	6/5
	S_{2}	0	5/3	0	1	\bigcirc	0	2	6/5

	x_{1}	1	0	$1 / 5$	0		$3 / 5$		
	x_{2}	0	1	$-3 / 5$	0			$6 / 5$	
	$\mathrm{~s}_{2}$	0	0	1	1		0		

$\mathrm{x}_{1}=3 / 5 \quad \mathrm{X}_{2}=6 / 5 \quad \mathrm{Z}^{\prime}{ }_{\text {max }}=-12 / 5 \quad \mathrm{Z}_{\text {min }}=12 / 5$
(b) Find e^{A} and 4^{A}. If $A=\left[\begin{array}{ll}3 / 2 & 1 / 2 \\ 1 / 2 & 3 / 2\end{array}\right]$

Solution:

The characteristic equation of A is
$\left|\begin{array}{cc}\frac{3}{2}-\lambda & 1 / 2 \\ 1 / 2 & \frac{3}{2}-\lambda\end{array}\right|=0$
$(3 / 2-\lambda)^{2}-1 / 4=0$
$9 / 4-3 \lambda+\lambda^{2}-1 / 4=0$
$\lambda^{2}-3 \lambda+2=0$
$(\lambda-1) *(\lambda-2)=0$
$\lambda=1,2$

1. For $\lambda=1,[\mathrm{~A}-\lambda \mathrm{I}] X=0$ gives

$$
\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

By $2 \mathrm{R}_{2}$ and $2 \mathrm{R}_{1}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
By $\mathrm{R}_{2}-\mathrm{R}_{1}\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\mathrm{x}_{1}+\mathrm{x}_{2}=0$
putting $\mathrm{x}_{2}=-\mathrm{t}$, we get $\mathrm{x}_{1}=\mathrm{t}$
$\mathrm{X}_{1}=\left[\begin{array}{c}t \\ -t\end{array}\right]=t\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Hence the eigen values are $1,-1$.
2. For $\lambda=2,[\mathrm{~A}-\lambda \mathrm{I}] X=0$ gives

$$
\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

By $2 \mathrm{R}_{2}$ and $2 \mathrm{R}_{1}\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
By $\mathrm{R}_{2}-\mathrm{R}_{1}\left[\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$-\mathrm{x}_{1}+\mathrm{X}_{2}=0$
$\mathrm{x}_{1}=\mathrm{x}_{2}$
putting $\mathrm{x}_{2}=\mathrm{t}$, we get $\mathrm{x}_{1}=\mathrm{t}$
$\mathrm{X}_{2}=\left[\begin{array}{l}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Hence the eigen values are 1,1 .
$M=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \quad|M|=2$
$\mathrm{M}^{-1}=\frac{\operatorname{adj} A^{-1}}{|M|}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
Now, $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
If $\mathrm{f}(\mathrm{A})=\mathrm{e}^{\mathrm{A}}, \quad \mathrm{f}(\mathrm{D})=\mathrm{e}^{\mathrm{D}}=\left[\begin{array}{cc}e^{1} & 0 \\ 0 & e^{2}\end{array}\right]$
If $\mathrm{f}(\mathrm{A})=4^{\mathrm{A}}, \quad \mathrm{f}(\mathrm{D})=4^{\mathrm{D}}=\left[\begin{array}{cc}4^{1} & 0 \\ 0 & 4^{2}\end{array}\right]$
$\mathrm{e}^{\mathrm{A}}=\mathrm{Mf}(\mathrm{D}) \mathrm{M}^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{1} & 0 \\
0 & e^{2}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
e+e^{2} & -e+e^{2} \\
-e+e^{2} & e+e^{2}
\end{array}\right]
\end{aligned}
$$

Similarly, replacing e by 4 , we get
$4^{A}=\frac{1}{2}\left[\begin{array}{ll}20 & 12 \\ 12 & 20\end{array}\right]=\left[\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right]$
(c) Verify Green's theorem for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the closed curve given by $y \square x^{2} ; y=\sqrt{x}$

Solution:

By Green's Theorem

$$
\int_{c} P \cdot d x+Q \cdot d y=\iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x \cdot d y
$$

Here, $\mathrm{P}=\left(3 x^{2}-8 y^{2}\right) ; \mathrm{Q}=(4 y-6 x y)$
$\frac{\delta Q}{\delta x}=-6 y ; \frac{\delta P}{\delta y}=-16 y$
Along, $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{dy}=2 \mathrm{x}$. dx and x varies from $(0,1)$

$$
\int_{c} P \cdot d x+Q . d y
$$

$$
\begin{aligned}
& \quad=\int_{0}^{1}\left(3 x^{2}-8 y^{2}\right) \cdot d x+(4 y-6 x y) \cdot \mathrm{dy} \\
& = \\
& \quad \int_{0}^{1}\left(3 x^{2}-8 x^{4}\right) \cdot d x+2 x\left(4 x^{2}-6 x^{3}\right) \cdot d x \\
& \quad=\left(\left.\frac{3 x^{3}}{3}-\frac{8 x^{5}}{5}+\frac{8 x^{4}}{4}-\frac{12 x^{5}}{5} \right\rvert\, x=0 \text { to } 1\right) \\
& \quad=1-\frac{8}{5}+\frac{8}{4}-\frac{12}{5}=-1
\end{aligned}
$$

Along $y=\sqrt{x}, d y=\frac{1}{2 \sqrt{x}} d x$

$$
\int_{c} P \cdot d x+Q \cdot d y=\int_{0}^{1}\left(3 x^{2}-8 x\right) \cdot d x+(4 \sqrt{x}-6 x \sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \cdot d x
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(3 x^{2}-8 x\right) \cdot d x+(2-3 x) \cdot d x \\
& =\left(\left.\frac{3 x^{3}}{3}-\frac{8 x^{2}}{2}+2 x-\frac{3 x^{2}}{2} \right\rvert\, x=0 \text { to } 1\right) \\
& =1-4+2-\frac{3}{2}=\frac{-5}{2} \\
& \iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x \cdot d y=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(-22 y) \cdot d x \cdot d y \\
& \quad=\int_{0}^{1}\left(-11 y^{2} \mid y=x^{2} \text { to } \sqrt{x}\right) \cdot d x \\
& \quad=\int_{0}^{1}-11 x-\left(-11 x^{4}\right) \cdot d x \\
& =\int_{0}^{1}-11 x+11 x^{4} \cdot d x \\
& =\left(\left.\frac{-11 x^{2}}{2}+\frac{11 x^{5}}{5} \right\rvert\, x=0 \text { to } 1\right) \\
& =\frac{-33}{10}
\end{aligned}
$$

Q3 (a) Prove that $\bar{F}=2 x y z^{2} i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k$ is a conservative field.
Find ϕ such that $\bar{F}=\nabla$. ϕ. Hence find the work done in moving an object in this field from $(0,0,1)$ to (1, $\pi / 4,2$).
$\operatorname{Curl}(\bar{F})=\left|\begin{array}{ccc}i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 2 x y z^{2} & x^{2} z^{2}+z \cos y z & 2 x^{2} y z+y \cos y z\end{array}\right|$
$=\left(2 x^{2} z+\cos y z-y z \sin y z-2 x^{2} z+y z \sin y z-\cos y z\right) i+(4 x y z-4 x y z) j+\left(2 x z^{2}-2 z x^{2}\right) k$ $=0$
\bar{F} is irrotatonal.
Since \bar{F} is irrotatonal there exists a scalar function ϕ, such that $\bar{F}=\nabla . \phi$

$$
2 x y z^{2} i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k=\frac{\delta \phi}{\delta x}+\frac{\delta \phi}{\delta y}+\frac{\delta \phi}{\delta z}
$$

$\frac{\delta \phi}{\delta x}=2 x y z^{2} ; \quad \frac{\delta \phi}{\delta y}=\left(x^{2} z^{2}+z \cos y z\right) ; ~ \frac{\delta \phi}{\delta z}=\left(2 x^{2} y z+y \cos y z\right)$
$\mathrm{d} \phi=\frac{\delta \phi}{\delta x} d x+\frac{\delta \phi}{\delta y} d y+\frac{\delta \phi}{\delta z} d z$

$$
\begin{aligned}
& =2 x y z^{2} d x+\left(x^{2} z^{2}+z \cos y z\right) d y+\left(2 x^{2} y z+y \cos y z\right) d z \\
& =\left(2 x y z^{2} d x+x^{2} z^{2} d y+2 x^{2} y z d z\right)+(z \cos y z d y+y \cos y z d z) \\
& =d\left(x^{2} y z^{2}+\sin y z\right)
\end{aligned}
$$

$\Phi=x^{2} y z^{2}+\sin y z$
Now, Work done $=\int_{c} \bar{F} \cdot d \bar{r}=\int_{c} d\left(x^{2} y z^{2}+\sin y z\right.$

$$
\begin{aligned}
& =\left(x^{2} y z^{2}+\sin y z \left\lvert\,(0,0,1) \operatorname{to}\left(1, \frac{\pi}{4}, 2\right)\right.\right) \\
& =\pi+1
\end{aligned}
$$

(b)The standard deviations calculated from two random samples of sizes 9 and 13 are 1.99 and 1.9. Can the samples be regard as drawn from the normal populations with same standard Deviations.
(Given: $F_{0.025}=3.51$ with d.o.f. $8 \& 12$ and $F_{0.025}=4.20$ with d.o.f. $12 \& 8$.)

Solution:

Null Hypothesis Ho: $\sigma_{1}{ }^{2}=\sigma_{1}{ }^{2}$
Alternative Hypothesis Ha: $\sigma_{1}{ }^{2} \neq \sigma_{1}{ }^{2}$
Calculations of Test Statistic: $\mathrm{F}=\frac{n_{1} s_{1}^{2} /\left(n_{1}-1\right)}{n_{2} s_{2}^{2} /\left(n_{2}-1\right)}$
We are given $\mathrm{n}_{1}=9, \mathrm{n}_{2}=13, s_{1}{ }^{2}=1.99^{2}, s_{2}{ }^{2}=1.9^{2}$
$\mathrm{F}=\frac{9 * 1.99^{2} /(9-1)}{13 * 1.9^{2} /(13-1)}=\frac{4.455}{3.91}=1.139$
Level of significance $\alpha=0.05$
Degree of freedom $\mathrm{v}_{1}=\mathrm{n}_{1}-1=8$ for the numerator
 $\mathrm{v}_{2}=\mathrm{n}_{2}-1=12$ for the denominator
Critical Value: The table value
$\mathrm{F}_{(8,12)}(0.025)=3.51$
$\mathrm{F}_{(12,8)}(0.025)=4.20$
$\frac{1}{\mathrm{~F}(12,8)(0.025)}=\frac{1}{4.20}=0.238$
Decision: Since the calculated value $\mathrm{F}=1.139$ lies between 0.238 and 3.51 , we accept the null hypothesis.
(c)Find the index, rank, signature and class of the Quadratic Form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+3 x_{3}{ }^{2}+2 x_{1} x_{2}-$ $2 x_{1} x_{3}+2 x_{2} x_{3}$ by reducing it to canonical form using congruent transformation method.
Solution:
The matrix form is
$\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$
We write $\mathrm{A}=\mathrm{IAI}$
$\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
By $R_{2}-R_{1}, R_{3}-R_{1}, C_{2}-C_{1}, C_{3}-C_{1}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

By $R_{3}-2 R_{2}, C_{3}-2 C_{2}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
3 & -2 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$
$x_{1}=y_{1}-y_{2}+y_{3}$
$x_{2}=y_{2}-2 y_{3}$
$x_{3}=y_{3}$
The rank $=3$, index $=2$
Signature $=$ difference between positive squares and negative squares $=2-1=1$
Since some diagonal elements are positive, some are negative, the value class is indefinite.

Q4 (a) Evaluate $\iint_{S} \bar{F} . d \bar{S}$ where $\bar{F}=(2 x y+z) i+y^{2} j-(x+3 y) k$ and S is the closed surface bounded by $\mathrm{x}=0 . \mathrm{Y}=0, \mathrm{z}=0,2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=6$.

Solution:

By divergence formula,
$\iint_{S} \bar{F} \cdot d \bar{S}=\iiint_{V} \nabla \cdot \bar{F} . d i v$
Now, $\bar{F}=(2 x y+z) i+y^{2} j-(x+3 y) k$
$\nabla \cdot \bar{F}=\frac{\delta(2 x y+z)}{\delta x}+\frac{\delta\left(y^{2}\right)}{\delta y}-\frac{\delta(x+3 y)}{\delta z}$

$$
=4 y
$$

$$
\begin{aligned}
& \iiint_{V} \nabla . \bar{F} . d i v=\int_{x=0}^{3} \int_{y=0}^{3-x} \int_{z=0}^{6-2 x-2 y} 4 y \cdot d x d y d z \\
&=\int_{x=0}^{3} \int_{y=0}^{3-x} \int_{z=0}^{6-2 x-2 y} \frac{4 y^{2}}{2} \cdot d x d y d z \\
&= \\
& \begin{aligned}
& \int_{x=0}^{3} \int_{y=0}^{3-x}(4 y z \mid z=0 t o 6-2 x-2 y) \cdot d x d y \\
&=\int_{x=0}^{3} \int_{y=0}^{3-x} 4 y(6-2 x-2 y)-4 y * 0 \cdot d x d y \\
&=\int_{x=0}^{3} \int_{y=0}^{3-x} 24 y-8 x y-8 y^{2} \cdot d x d y \\
&=\int_{x=0}^{3}\left(\left.\frac{24 y^{2}}{2}-\frac{8 x y^{2}}{2}-\frac{y^{3}}{3} \right\rvert\, x=0 \text { to } 3-x\right) \cdot d x \\
&=\int_{x=0}^{3}\left(\left.12 y^{2}-4 x y^{2}-\frac{y^{3}}{3} \right\rvert\, x=0 \text { to } 3-x\right) \cdot d x \\
&=\int_{x=0}^{3} 12(3-x)^{2}-4 x(3-x)^{2}-\frac{(3-x)^{3}}{3} \cdot d x \\
&=\int_{x=0}^{3} 12(3-x)^{2}-4\left(3 x-6 x^{2}+x^{3}\right)-\frac{(3-x)^{3}}{3} \cdot d x \\
&=\left(\left.12 \frac{(3-x)^{3}}{(-1) * 3}-4 *\left(\frac{3 x^{2}}{2}-\frac{6 x^{3}}{3}+\frac{x^{4}}{4}\right)-\frac{(3-x)^{4}}{(-1) * 3 * 4} \right\rvert\, x=0 \text { to } 3\right) \\
&=118.8
\end{aligned}
\end{aligned}
$$

(b) Verify Cayley Hamilton theorem to find $2 A^{4}-5 A^{3}-7 A+6$ where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$

Solution:

The characteristic equation of A is
$\left|\begin{array}{cc}1-\lambda & 2 \\ 2 & 2-\lambda\end{array}\right|=0$
$(1-\lambda)(2-\lambda)=0$
$\lambda^{2}-3 \lambda-2=0$
By Cayley Hamilton theorem, this equation is satisfied by A
$A^{2}-3 A-2=0$
Now, dividing $2 \lambda^{4}-5 \lambda^{3}-7 \lambda+6$ by $\lambda^{2}-3 \lambda-2$ we get
$2 \lambda^{4}-5 \lambda^{3}-7 \lambda+6=\left(\lambda^{2}-3 \lambda-2\right)\left(2 \lambda^{2}+\lambda+7\right)+16 \lambda+20$
In terms of matrix A, this means
$2 A^{4}-5 A^{3}-7 A+6=\left(A^{2}-3 A-2\right)\left(2 A^{2}+A+7\right)+16 A+20$
But as seen above, $\mathrm{A}^{2}-3 \mathrm{~A}-2 \mathrm{I}=0$
$2 A^{4}-5 A^{3}-7 A+6 I=16 A+20$
$2 A^{4}-5 A^{3}-7 A+6 I=16\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]+20\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}36 & 32 \\ 32 & 52\end{array}\right]$
(c) A sample of 400 students of under-graduate and 400 students of postgraduate classes was taken to know their opinion about autonomous colleges. 290 of the under-graduate and 310 of the postgraduate students favoured the autonomous status. Use chi-square test and test that the opinion regarding autonomous status of colleges is independent of the level of classes of students.
Solution:

	Students favoured the autonomous status	Students who have a different opinion	Total
Undergraduate	290	110	400
Post graduate	310	90	400
Total	600	200	800

(i)Null Hypothesis H_{0} : Opinion is independent of the level of classes (There is no association between the classes and the opinion)

Alternative Hypothesis H_{a} : There is association
(ii)On the basis of this hypothesis, the number in the first cell $=\frac{A X B}{N}$

Where, $\mathrm{A}=$ number of under-graduate students
$B=$ number who favoured
$\mathrm{N}=$ Total number of students
Expected frequency $=\frac{400 \times 600}{800}=300$
This is the frequency in the first cell.
The frequencies in the remaining cells are $400-300=100,600-300=300,400-300=100$.
Calculation of \boldsymbol{x}^{2}

\mathbf{O}	\mathbf{E}	$\|\boldsymbol{O}-\boldsymbol{E}\|-0.5$	$\frac{(\|\boldsymbol{O}-\boldsymbol{E}\|-0.5)^{2}}{\boldsymbol{E}}$
290	300	9.5	$\frac{9.5^{2}}{300}=0.301$
310	300	9.5	$\frac{9.5^{2}}{300}=0.301$
110	100	9.5	$\frac{9.5^{2}}{100}=0.903$
90	100	9.5	$\frac{9.5^{2}}{100}=0.903$
		Total	$\boldsymbol{x}^{2}=\mathbf{2 . 4 0 8}$

(iii) Level of significance : $\alpha=0.05$

Degree of Freedom : $(r-1)(c-1)=(2-1)(2-1)=1$
Critical valve : For 1 degree of freedom at 5% level of significance the table value of $x^{2}=3.81$
Decision : Since the calculated value of $x^{2}=2.408$ is less than the table value of $x^{2}=3.81$, the null hypothesis is accepted.

There is no association between the opinion and the level of classes.

Q5 (a) Prove that $\nabla \mathbf{x}\left[\frac{\bar{a} X \bar{r}}{r^{3}}\right]=\frac{\bar{a}}{r^{3}}-\frac{3(\bar{a} \cdot \bar{r}) \bar{r}}{r^{3}}$

Solution:

We have $\frac{\bar{a} X \bar{r}}{r^{3}}=\frac{\left(a_{1} i+a_{2} j+a_{3} k\right)(x i+y j+z k)}{r^{3}}=\frac{a_{1} x+a_{2} y+a_{3} z}{r^{3}}$
Let $\phi=\frac{\bar{a} X \bar{r}}{r^{3}}=\frac{a_{1} x+a_{2} y+a_{3} z}{r^{3}}$

$$
\frac{\delta \phi}{\delta x}=\frac{a_{1} r^{3}-\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot 3 \cdot r^{2}(\delta r / \delta x)}{r^{6}}
$$

But $r^{2}=x^{2}+y^{2}+z^{2}, \quad 2 r \cdot \frac{\delta r}{\delta x}=2 x, \frac{\delta r}{\delta x}=\frac{x}{r}$

$$
\begin{gathered}
\frac{\delta \phi}{\delta x}=\frac{a_{1} r^{3}-\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot 3 \cdot r^{1} \cdot x}{r^{6}}=\frac{a_{1} r^{3}}{r^{6}}-\frac{\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot 3 \cdot x}{r^{6-1}} \\
\frac{\delta \phi}{\delta x}=\frac{a_{1}}{r^{3}}-\frac{3 \cdot\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot x}{r^{5}} \\
\frac{\delta \phi}{\delta y}=\frac{a_{2}}{r^{3}}-\frac{3 \cdot\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot y}{r^{5}} \\
\frac{\delta \phi}{\delta z}=\frac{a_{3}}{r^{3}}-\frac{3 \cdot\left(a_{1} x+a_{2} y+a_{3} z\right) \cdot z}{r^{5}}
\end{gathered}
$$

$\nabla \phi=\frac{\delta \phi}{\delta x} i+\frac{\delta \phi}{\delta y} j+\frac{\delta \phi}{\delta z} k$

$$
=\frac{1}{r^{3}}\left(a_{1} i+a_{2} j+a_{3} k\right)-\frac{n}{r^{5}}\left[\left(a_{1} x+a_{2} y+a_{3} z\right)(x i+y j+z k)\right]
$$

$\bar{a} \cdot \bar{r}=\left(a_{1} i+a_{2} j+a_{3} k\right)(x i+y j+z k)=\left(a_{1} x+a_{2} y+a_{3} z\right)$
$\nabla \phi=\frac{\bar{a}}{r^{3}}-\frac{3(\bar{a} \cdot \bar{r}) \bar{r}}{r^{3}}$
(b) Show that the matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$ is diagonalizable and hence find the transforming matrix and diagonal matrix.

Solution:

The characteristic equation of A is
$\left|\begin{array}{ccc}3-\lambda & -1 & 1 \\ -1 & 3-\lambda & -1 \\ 1 & -1 & 3-\lambda\end{array}\right|=0$
$(3-\lambda)[(3-\lambda)(3-\lambda)-1]+1(\lambda-3+1)-1(1-3+\lambda)=0$
$\lambda^{3}-9 \lambda^{2}-24 \lambda+20=0$
$(\lambda-2)\left(\lambda^{2}-7 \lambda+10\right)=0$
$\lambda=2, \lambda=2, \lambda=5$
for $\lambda=2$,

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2}+(-1) R_{1}$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-R_{1}$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{1}-x_{2}+x_{3}=0
$$

The rank of coefficient matrix is 1 . The number of unknowns is 3 . Hence, there are $3-1=2$ linearly independent solution. Putting $x_{2}=t$ and $x_{3}=s$ then $x_{1}=t-s$.
$X_{1}=\left[\begin{array}{c}t-s \\ t \\ s\end{array}\right]=t\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
Corresponding to the eigenvalue 2 , we get the following two linearly independent eigenvectors.
$X_{1}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\prime}$ and $X_{2}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{\prime}$
for $\lambda=5$,

$$
\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{1} /(-2)$

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{-1}{2} \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2}-(-1) R_{1}$

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{-1}{2} \\
0 & \frac{-3}{2} & \frac{-3}{2} \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-R_{1}$

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{-1}{2} \\
0 & \frac{-3}{2} & \frac{-3}{2} \\
1 & \frac{-3}{2} & \frac{-3}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{2} /\left(\frac{-3}{2}\right)$

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{-1}{2} \\
0 & 1 & 1 \\
1 & \frac{-3}{2} & \frac{-3}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{3}-\left(\frac{-3}{2}\right) R_{2}$

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{-1}{2} \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By $R_{1}-\left(\frac{1}{2}\right) R_{2}$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
x_{1}-x_{3}=0 \\
x_{2}+x_{3}=0
\end{gathered}
$$

So, $x_{1}=x_{3} ; x_{2}=-x_{3}$ and $x_{3}=x_{3}$

$$
X_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Thus, A is diagonalised to $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$ and the diagonalizing matrix is $\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$
(c) Ten school boys were given a test in statistics and their scores were recorded. They were given a month special coaching and a second test was
given to them in the same subject at the end of the coaching period .Test at
$\mathbf{5 \%}$ level of significance, if the marks given below give evidence to the
fact that the students are benefited by coaching

Mark in test I	70	68	56	75	80	90	68	75	56	58
Mark in test II	68	70	52	73	75	78	80	92	54	55

Solution:
We first calculate the differences between marks in test I and marks in test II $=\mathrm{X}$ and from these we calculate \bar{X} and s^{2}

X	-2	2	-4	-2	-5	-12	12	17	-2	-3
$d_{i}=x_{i}$ -2	-4	0	-6	-4	-7	-14	10	15	-4	-5
$d_{i}{ }^{2}$ $=\left(x_{i}\right.$ $-2)^{2}$	16	0	36	16	49	196	100	225	16	25

$\bar{X}=a+\frac{\sum d_{i}}{n}=2+\frac{-19}{10}=0.1$
$\sum\left(X_{i}-\bar{X}\right)^{2}=\sum d_{i}^{2}-\frac{\sum\left(d_{i}\right)^{2}}{n}=679-\frac{0.01}{10}=678.999$
$\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}=67.90$
The null hypothesis Ho $\mu=0$
Alternative hypothesis Ha $\mu=/ 0$
Calculation of test statistic
Since the sample size is small, we use students t-distribution
$\mathrm{t}=\frac{\bar{X}-\mu}{s / \sqrt{n-1}}=\frac{0.1-0}{\sqrt{67.90} / \sqrt{9}}=0.036$
Level of significance : $\alpha=0.05$
Critical valve :The value of t_{α} at 5% level of significance for $v=10-1=9$, degree of freedom=2.262
Decision : Since the calculated value of $|t|=0.036$ is less than the critical value of $t_{\alpha}=2.262$, the hypothesis is accepted.

The students are not Benefitted by coaching.

Q6 (a) In the sample of 1000 cases, the mean of certain case is $\mathbf{1 4}$ and standard deviation is 2.5 Assuming the distribution to be normal. Find 1. How many students score between 12 and 152 how many score above 18 .

Solution:

1. $z_{1}=\frac{x_{1}-\mu}{\sigma}=\frac{12-14}{2.5}=-0.8$
$z_{1}=\frac{x_{1}-\mu}{\sigma}=\frac{15-14}{2.5}=0.4$
Area lying between -0.8 to $0.4=$ Area between 0 to $0.8+$ Area between 0 to 0.4

$$
\begin{aligned}
& =0.2881+0.1554 \\
= & 0.4435
\end{aligned}
$$

Required no. of students $=1000 * 0.4435=444$ (approx.)

$$
\text { 2. } z_{1}=\frac{x_{1}-\mu}{\sigma}=\frac{18-14}{2.5}=1.6
$$

Area right to $1.6=0.5-($ Area between 0 to 1.6)

$$
\begin{aligned}
& =0.5-0.4452 \\
= & 0.0548
\end{aligned}
$$

Required no. of students $=1000 * 0.0548=55$ (approx.)
(b)Evaluate by Stoke's theorem $\int_{c}\left(x y d x+x y^{2} . d y\right)$ where C is the square in the $x y=$ plane with (1,0),(0,1),(-1,0),(0,-1).

Solution:

By Stoke's theorem $\int_{c} \bar{F} . d \bar{r}=\iint_{c} \bar{N} . \nabla X \bar{F} . d s$
In the xy-plane $\bar{r}=x i+y j+0 k$

$$
\overline{d r}=d x i+d y j
$$

Hence, from $\bar{F} . d \bar{r}=\left(x y d x+x y^{2} . d y\right)$, we get

$$
\bar{F}=x y i+x y^{2} \cdot j+0 k
$$

$\nabla X \bar{F}=\left|\begin{array}{ccc}i & j & k \\ \delta / \delta x & \delta / \delta y & \delta / \delta z \\ x y & x y^{2} & 0\end{array}\right|=(0-0) i+(0-0) j+\left(y^{2}-x\right) k$
Further, $\bar{N}=k$ and ds=dx.dy

$$
\begin{aligned}
\iint_{c} \bar{N} \cdot \nabla X \bar{F} \cdot d s= & \iint_{S} k \cdot\left(y^{2}-x\right) \cdot k d x \cdot d y \\
& =\iint_{S}\left(y^{2}-x\right) \cdot d x \cdot d y \text { where } \mathrm{S} \text { is a square } \mathrm{ABCD} \\
& =4 \iint_{\Delta 0 A B}\left(y^{2}-x\right) \cdot d x \cdot d y
\end{aligned}
$$

The equation of the line AB is $\frac{y-1}{1-0}=\frac{x-0}{0-1}$
$\iint_{\triangle O A B}\left(y^{2}-x\right) \cdot d x . d y=\int_{x=0}^{1} \quad \int_{y=0}^{y=1-x}\left(y^{2}-x\right) \cdot d x \cdot d y$

$$
\begin{aligned}
& =\int_{x=0}^{1}\left[\left(\left.\frac{y^{3}}{3}-x y \right\rvert\, y=0 \text { to } 1-x\right)\right] \cdot d x \\
& =\int_{0}^{1} \frac{(1-x)^{3}}{3}-x(1-x) \cdot d x \\
& =\frac{1}{3}\left(\left.x-3 x^{2}+2 x^{3}-\frac{x^{4}}{4} \right\rvert\, x=0 \text { to } 1\right) \\
& =\frac{1}{3} *\left(1-3+2-\frac{1}{4}\right)=-1 / 12 \\
& \\
& \int_{c} \bar{F} \cdot d \bar{r}=\iint_{c} \bar{N} \cdot \nabla X \bar{F} \cdot d s=4 *\left(-\frac{1}{12}\right)=-1 / 3
\end{aligned}
$$

(c) Solve the L.P.P. from its primal as well as from its dual

Minimise $\mathbf{z = 0 . 7} \mathbf{x}_{1}+\mathbf{0 . 5} \mathbf{x}_{\mathbf{2}}$

Subjected to $x_{1} \geq 4, x_{2} \geq 6$

$$
x_{1}+2 x_{2} \geq 20
$$

$$
2 x_{1}+x_{2} \geq 18
$$

$$
\mathbf{x}_{1}, x_{2} \geq 0
$$

Solution:

Maximize $z^{\prime}=-z=-0.7 x_{1}-0.5 x_{2}-0 s_{1}-0 s_{2}-0 s_{3}-0 s_{4}-\mathrm{MA}_{1}-\mathrm{MA}_{2}-\mathrm{MA}_{3}-\mathrm{MA}_{4}$
Subjected to $\mathrm{x}_{1}+0 \mathrm{x}_{2}-\mathrm{s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}+0 \mathrm{~s}_{4}+\mathrm{A}_{1}+0 \mathrm{~A}_{2}+0 \mathrm{~A}_{3}+0 \mathrm{~A}_{4}=4$.

$$
\begin{align*}
& 0 x_{1}+x_{2}+\mathrm{s}_{1}-\mathrm{s}_{2}+0 \mathrm{~s}_{3}+0 \mathrm{~s}_{4}+0 \mathrm{~A}_{1}+\mathrm{A}_{2}+0 \mathrm{~A}_{3}+0 \mathrm{~A}_{4}=6 \ldots \tag{3}\\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}-\mathrm{s}_{3}+0 \mathrm{~s}_{4}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}+\mathrm{A}_{3}+0 \mathrm{~A}_{4}=20 \tag{4}\\
& 2 \mathrm{x}_{1}+\mathrm{x}_{2}-0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}-\mathrm{s}_{4}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}+0 \mathrm{~A}_{3}+\mathrm{A}_{4}=18 .
\end{align*}
$$

Multiply (1),(2),(3) and (4) by M and to (1)
$z^{\prime}=(-0.7+4 M) x_{1}+(-0.5+M) x_{2}-\mathrm{Ms}_{1}-\mathrm{Ms}_{2}-\mathrm{Ms}_{3}-\mathrm{Ms}_{4}-0 \mathrm{~A}_{1}-0 \mathrm{~A}_{2}-0 \mathrm{~A}_{3}-0 \mathrm{~A}_{4}-48 \mathrm{M}$
$\mathrm{z}^{\prime}+(0.7-4 \mathrm{M}) \mathrm{x}_{1}+(0.5-\mathrm{M}) \mathrm{x}_{2}+\mathrm{Ms}_{1}+\mathrm{Ms}_{2}+\mathrm{Ms}_{3}+\mathrm{Ms}_{4}+0 \mathrm{~A}_{1}+0 \mathrm{~A}_{2}+0 \mathrm{~A}_{3}+0 \mathrm{~A}_{4}=-48 \mathrm{M}$

$\begin{array}{l}\text { Iteration } \\ \text { No. }\end{array}$	$\begin{array}{l}\text { Basic } \\ \text { Variable }\end{array}$	Coef ficie nts										x_{1}	x_{2}	$\mathrm{~s}_{1}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	R.H.S.	Solution						

OUR CENTERS :

1	z	$\begin{aligned} & 0.7- \\ & 4 \mathrm{M} \end{aligned}$	0	M	$\begin{aligned} & 0.5- \\ & 3 \mathrm{M} \end{aligned}$	M	M	0	0	0	-3-24M	
A_{2} leaves	A_{1}	1*	0	-1	0	0	0	1	0	0	4	4
x1enters	X2	0	1	0	-1	0	0	0	0	0	6	-
	A_{3}	1	0	0	2	-1	0	0	1	0	8	8
	A_{4}	2	0	0	1	0	-1	0	0	0	12	6
2	z	0	0	$\begin{aligned} & 0.7- \\ & 3 \mathrm{M} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5- \\ 3 \mathrm{M} \\ \hline \end{array}$	M	M		0	0	-5.8-8M	
A_{3} leaves	x_{1}	1	0	-1	0	0	0		0	0	4	-
S2enters	X_{2}	0	1	0	-1	0	0	,	0	0	6	-
	A_{3}	0	0	1	2*	-1	0		1	0	4	2
	A_{4}	0	0	2	1	0	-1		0	0	4	4
3	z	0	0	$\begin{aligned} & 0.45- \\ & 3 / 2 \mathrm{M} \end{aligned}$	0	$\begin{aligned} & \text { 0.5/2- } \\ & \mathrm{M} / 2 \end{aligned}$	M			0	$-6.8-2 \mathrm{M}$	
A_{4} leaves	X1	1	0	-1	0	0	0			0	4	-
sienters	X_{2}	0	1	1/2	0	-1/2	0			0	8	16
	S_{2}	0	0	1/2	1	-1/2	0			0	2	4
	A_{4}	0	0	3/2*	0	1/2	-1			0	2	4/3
4	z	0	0	0	0	0.1	0.3				-7.4	
	X_{1}	1	0	0	0	1/3	-2/3			,	16/3	
	x_{2}	0	1	0	0	-2/3	1/3			-	22/3	
	S_{2}	0	0	0	1	-2/3	1/3			-	4/3	
	s_{1}	0	0	1	0	1/3	-2/3	-	\bigcirc	,	$4 / 3$	

